Mechanical force of uterine occupation enables large vesicle extrusion from proteostressed maternal neurons Wang G, Guasp R, Salam S, Chuang E, Morera A, Smart AJ, Jimenez D, Shekhar S, Melentijevic I, Nguyen KC, Hall DH, Grant BD, Driscoll M. Mechanical force of uterine occupation enables large vesicle extrusion from proteostressed maternal neurons. bioRxiv. 2023. Epub 20231116. doi: 10.1101/2023.11.13.565361. PubMed PMID: 38014134; PMCID: PMC10680645. [PubMed]

A conserved requirement for RME-8/DNAJC13 in neuronal autophagic lysosome reformation Swords SB, Jia N, Norris A, Modi J, Cai Q, Grant BD. A conserved requirement for RME-8/DNAJC13 in neuronal autophagic lysosome reformation. Autophagy. 2024;20(4):792-808. Epub 20231109. doi: 10.1080/15548627.2023.2269028. PubMed PMID: 37942902; PMCID: PMC11062384. [PubMed]

Syndapin and GTPase RAP-1 control endocytic recycling via RHO-1 and non-muscle myosin II Rodriguez-Polanco WR, Norris A, Velasco AB, Gleason AM, Grant BD. Syndapin and GTPase RAP-1 control endocytic recycling via RHO-1 and non-muscle myosin II. Curr Biol. 2023. Epub 20231005. doi: 10.1016/j.cub.2023.09.051. PubMed PMID: 37832552. [PubMed]

Intermediate filaments associate with aggresome-like structures in proteostressed C. elegans neurons and influence large vesicle extrusions as exophers Arnold ML, Cooper J, Androwski R, Ardeshna S, Melentijevic I, Smart J, Guasp RJ, Nguyen KCQ, Bai G, Hall DH, Grant BD, Driscoll M. Intermediate filaments associate with aggresome-like structures in proteostressed C. elegans neurons and influence large vesicle extrusions as exophers. Nat Commun. 2023;14(1):4450. Epub 20230724. doi: 10.1038/s41467-023-39700-1. PubMed PMID: 37488107; PMCID: PMC10366101. [PubMed]

Large vesicle extrusions from C. elegans neurons are consumed and stimulated by glial-like phagocytosis activity of the neighboring cell Wang Y, Arnold ML, Smart AJ, Wang G, Androwski RJ, Morera A, Nguyen KCQ, Schweinsberg PJ, Bai G, Cooper J, Hall DH, Driscoll M, Grant BD. Large vesicle extrusions from C. elegans neurons are consumed and stimulated by glial-like phagocytosis activity of the neighboring cell. Elife. 2023;12. Epub 20230302. doi: 10.7554/eLife.82227. PubMed PMID: 36861960; PMCID: PMC10023159. [PubMed]

Mutagenesis and structural modeling implicate RME-8 IWN domains as conformational control points Norris A, McManus CT, Wang S, Ying R, Grant BD. Mutagenesis and structural modeling implicate RME-8 IWN domains as conformational control points. PLoS Genet. 2022;18(10):e1010296. Epub 20221024. doi: 10.1371/journal.pgen.1010296. PubMed PMID: 36279308; PMCID: PMC9642905. [PubMed]

Stress increases in exopher-mediated neuronal extrusion require lipid biosynthesis, FGF, and EGF RAS/MAPK signaling Cooper JF, Guasp RJ, Arnold ML, Grant BD, Driscoll M. Stress increases in exopher-mediated neuronal extrusion require lipid biosynthesis, FGF, and EGF RAS/MAPK signaling. Proc Natl Acad Sci U S A. 2021;118(36). doi: 10.1073/pnas.2101410118. PubMed PMID: 34475208; PMCID: PMC8433523. [PubMed]

Quantitative Approaches for Scoring in vivo Neuronal Aggregate and Organelle Extrusion in Large Exopher Vesicles in C. elegans Arnold ML, Cooper J, Grant BD, Driscoll M. Quantitative Approaches for Scoring in vivo Neuronal Aggregate and Organelle Extrusion in Large Exopher Vesicles in C. elegans. J Vis Exp. 2020(163). Epub 20200918. doi: 10.3791/61368. PubMed PMID: 33016946; PMCID: PMC7805482. [PubMed]

Endosomal microdomains: Formation and function Norris A, Grant BD. Endosomal microdomains: Formation and function. Curr Opin Cell Biol. 2020;65:86-95. Epub 20200401. doi: 10.1016/j.ceb.2020.02.018. PubMed PMID: 32247230; PMCID: PMC7529669. [PubMed]

C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress Melentijevic I, Toth ML, Arnold ML, Guasp RJ, Harinath G, Nguyen KC, Taub D, Parker JA, Neri C, Gabel CV, Hall DH, Driscoll M. C. elegans neurons jettison protein aggregates and mitochondria under neurotoxic stress. Nature. 2017;542(7641):367-71. Epub 20170208. doi: 10.1038/nature21362. PubMed PMID: 28178240; PMCID: PMC5336134. [PubMed]

SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes Norris A, Tammineni P, Wang S, Gerdes J, Murr A, Kwan KY, Cai Q, Grant BD. SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes. Proc Natl Acad Sci U S A. 2017;114(3):E307-E16. Epub 20170104. doi: 10.1073/pnas.1612730114. PubMed PMID: 28053230; PMCID: PMC5255583. [PubMed]

Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the C. elegans intestine Gleason AM, Nguyen KC, Hall DH, Grant BD. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the C. elegans intestine. Mol Biol Cell. 2016;27(23):3746-56. Epub 20160914. doi: 10.1091/mbc.E16-02-0116. PubMed PMID: 27630264; PMCID: PMC5170557. [PubMed]

RAB-10 Promotes EHBP-1 Bridging of Filamentous Actin and Tubular Recycling Endosomes Wang P, Liu H, Wang Y, Liu O, Zhang J, Gleason A, Yang Z, Wang H, Shi A, Grant BD. RAB-10 Promotes EHBP-1 Bridging of Filamentous Actin and Tubular Recycling Endosomes. PLoS Genet. 2016;12(6):e1006093. Epub 20160606. doi: 10.1371/journal.pgen.1006093. PubMed PMID: 27272733; PMCID: PMC4894640. [PubMed]

Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes Liu O, Grant BD. Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes. PLoS Genet. 2015;11(9):e1005514. Epub 20150922. doi: 10.1371/journal.pgen.1005514. PubMed PMID: 26393361; PMCID: PMC4578947. [PubMed]

RAB-10-GTPase-mediated regulation of endosomal phosphatidylinositol-4,5-bisphosphate Shi A, Liu O, Koenig S, Banerjee R, Chen CC, Eimer S, Grant BD. RAB-10-GTPase-mediated regulation of endosomal phosphatidylinositol-4,5-bisphosphate. Proc Natl Acad Sci U S A. 2012;109(35):E2306-15. Epub 20120806. doi: 10.1073/pnas.1205278109. PubMed PMID: 22869721; PMCID: PMC3435156. [PubMed]

EHBP-1 functions with RAB-10 during endocytic recycling in Caenorhabditis elegans Shi A, Chen CC, Banerjee R, Glodowski D, Audhya A, Rongo C, Grant BD. EHBP-1 functions with RAB-10 during endocytic recycling in Caenorhabditis elegans. Mol Biol Cell. 2010;21(16):2930-43. Epub 20100623. doi: 10.1091/mbc.E10-02-0149. PubMed PMID: 20573983; PMCID: PMC2921114. [PubMed]

AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling Pant S, Sharma M, Patel K, Caplan S, Carr CM, Grant BD. AMPH-1/Amphiphysin/Bin1 functions with RME-1/Ehd1 in endocytic recycling. Nat Cell Biol. 2009;11(12):1399-410. Epub 20091115. doi: 10.1038/ncb1986. PubMed PMID: 19915558; PMCID: PMC2788952. [PubMed]

Pathways and mechanisms of endocytic recycling Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol. 2009;10(9):597-608. doi: 10.1038/nrm2755. PubMed PMID: 19696797; PMCID: PMC3038567. [PubMed]

Differential requirements for clathrin in receptor-mediated endocytosis and maintenance of synaptic vesicle pools Sato K, Ernstrom GG, Watanabe S, Weimer RM, Chen CH, Sato M, Siddiqui A, Jorgensen EM, Grant BD. Differential requirements for clathrin in receptor-mediated endocytosis and maintenance of synaptic vesicle pools. Proc Natl Acad Sci U S A. 2009;106(4):1139-44. Epub 20090116. doi: 10.1073/pnas.0809541106. PubMed PMID: 19151157; PMCID: PMC2633560. [PubMed]

Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein Sato M, Sato K, Liou W, Pant S, Harada A, Grant BD. Regulation of endocytic recycling by C. elegans Rab35 and its regulator RME-4, a coated-pit protein. EMBO J. 2008;27(8):1183-96. Epub 20080320. doi: 10.1038/emboj.2008.54. PubMed PMID: 18354496; PMCID: PMC2367398. [PubMed]

A novel requirement for C. elegans Alix/ALX-1 in RME-1-mediated membrane transport Shi A, Pant S, Balklava Z, Chen CC, Figueroa V, Grant BD. A novel requirement for C. elegans Alix/ALX-1 in RME-1-mediated membrane transport. Curr Biol. 2007;17(22):1913-24. Epub 20071108. doi: 10.1016/j.cub.2007.10.045. PubMed PMID: 17997305; PMCID: PMC2175126. [PubMed]

Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic Balklava Z, Pant S, Fares H, Grant BD. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat Cell Biol. 2007;9(9):1066-73. Epub 20070819. doi: 10.1038/ncb1627. PubMed PMID: 17704769. [PubMed]

Dynamic regulation of caveolin-1 trafficking in the germ line and embryo of Caenorhabditis elegans Sato K, Sato M, Audhya A, Oegema K, Schweinsberg P, Grant BD. Dynamic regulation of caveolin-1 trafficking in the germ line and embryo of Caenorhabditis elegans. Mol Biol Cell. 2006;17(7):3085-94. Epub 20060503. doi: 10.1091/mbc.e06-03-0211. PubMed PMID: 16672374; PMCID: PMC1483042. [PubMed]

RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine Chen CC, Schweinsberg PJ, Vashist S, Mareiniss DP, Lambie EJ, Grant BD. RAB-10 is required for endocytic recycling in the Caenorhabditis elegans intestine. Mol Biol Cell. 2006;17(3):1286-97. Epub 20060104. doi: 10.1091/mbc.e05-08-0787. PubMed PMID: 16394106; PMCID: PMC1382317. [PubMed]

Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit Sato M, Sato K, Fonarev P, Huang CJ, Liou W, Grant BD. Caenorhabditis elegans RME-6 is a novel regulator of RAB-5 at the clathrin-coated pit. Nat Cell Biol. 2005;7(6):559-69. Epub 20050515. doi: 10.1038/ncb1261. PubMed PMID: 15895077; PMCID: PMC1398054. [PubMed]

ATP binding regulates oligomerization and endosome association of RME-1 family proteins Lee DW, Zhao X, Scarselletta S, Schweinsberg PJ, Eisenberg E, Grant BD, Greene LE. ATP binding regulates oligomerization and endosome association of RME-1 family proteins. J Biol Chem. 2005;280(17):17213-20. Epub 20050213. doi: 10.1074/jbc.M412751200. PubMed PMID: 15710626. [PubMed]