Our laboratory is widely known for field-leading work pioneering unique and extensive systems of tools and reagents for in vivo analysis of endocytic transport in the C. elegans germline (oocytes), intestine (a simple epithelial tube), coelomocytes (scavenger cells), hypodermis (skin), and most recently neurons, especially mechanosensory touch neurons. Our C. elegans germline studies were the key to identifying many novel factors essential for metazoan membrane trafficking (Sato et al., 2005; Sato et al., 2006; Balklava et al., 2007; Sato et al., 2008; Sato et al., 2009). Our C. elegans intestinal studies forged new understanding of tubular endocytic networks mediating cargo recycling pathways (Chen et al., 2006; Shi et al., 2007; Pant et al., 2009; Shi et al., 2010; Shi et al., 2012; Liu and Grant, 2015; Gleason et al., 2016; Wang et al., 2016; Rodriguez-Polanco et al., 2023), while our studies in coelomocytes have been key for direct analysis of cross-regulation among endosomal microdomains (Norris et al, 2017; Norris and Grant 2020; Norris et al., 2022). Our work in neurons has defined new mechanisms controlling lysosome reformation after autophagy (Swords et al., 2024), and a novel type of giant extracellular vesicle released by neurons (Wang et al., 2023; Cooper et al., 2021; Arnold et al., 2023; Wang et al., 2024). A distinctive theme across these studies is our development of molecular reagents that we manipulate and visualize within the living animal to address biological mechanisms in native context.
Related Publications
Mechanical force of uterine occupation enables large vesicle extrusion from proteostressed maternal neurons Wang G, Guasp R, Salam S, Chuang E, Morera A, Smart AJ, Jimenez D, Shekhar S, Melentijevic I, Nguyen KC, Hall DH, Grant BD, Driscoll M. Mechanical force of uterine occupation enables large vesicle extrusion from proteostressed maternal neurons. bioRxiv. 2023. Epub 20231116. doi: 10.1101/2023.11.13.565361. PubMed PMID: 38014134; PMCID: PMC10680645. [PubMed]
A conserved requirement for RME-8/DNAJC13 in neuronal autophagic lysosome reformation Swords SB, Jia N, Norris A, Modi J, Cai Q, Grant BD. A conserved requirement for RME-8/DNAJC13 in neuronal autophagic lysosome reformation. Autophagy. 2024;20(4):792-808. Epub 20231109. doi: 10.1080/15548627.2023.2269028. PubMed PMID: 37942902; PMCID: PMC11062384. [PubMed]
Syndapin and GTPase RAP-1 control endocytic recycling via RHO-1 and non-muscle myosin II Rodriguez-Polanco WR, Norris A, Velasco AB, Gleason AM, Grant BD. Syndapin and GTPase RAP-1 control endocytic recycling via RHO-1 and non-muscle myosin II. Curr Biol. 2023. Epub 20231005. doi: 10.1016/j.cub.2023.09.051. PubMed PMID: 37832552. [PubMed]
Intermediate filaments associate with aggresome-like structures in proteostressed C. elegans neurons and influence large vesicle extrusions as exophers Arnold ML, Cooper J, Androwski R, Ardeshna S, Melentijevic I, Smart J, Guasp RJ, Nguyen KCQ, Bai G, Hall DH, Grant BD, Driscoll M. Intermediate filaments associate with aggresome-like structures in proteostressed C. elegans neurons and influence large vesicle extrusions as exophers. Nat Commun. 2023;14(1):4450. Epub 20230724. doi: 10.1038/s41467-023-39700-1. PubMed PMID: 37488107; PMCID: PMC10366101. [PubMed]
Large vesicle extrusions from C. elegans neurons are consumed and stimulated by glial-like phagocytosis activity of the neighboring cell Wang Y, Arnold ML, Smart AJ, Wang G, Androwski RJ, Morera A, Nguyen KCQ, Schweinsberg PJ, Bai G, Cooper J, Hall DH, Driscoll M, Grant BD. Large vesicle extrusions from C. elegans neurons are consumed and stimulated by glial-like phagocytosis activity of the neighboring cell. Elife. 2023;12. Epub 20230302. doi: 10.7554/eLife.82227. PubMed PMID: 36861960; PMCID: PMC10023159. [PubMed]
Mutagenesis and structural modeling implicate RME-8 IWN domains as conformational control points Norris A, McManus CT, Wang S, Ying R, Grant BD. Mutagenesis and structural modeling implicate RME-8 IWN domains as conformational control points. PLoS Genet. 2022;18(10):e1010296. Epub 20221024. doi: 10.1371/journal.pgen.1010296. PubMed PMID: 36279308; PMCID: PMC9642905. [PubMed]
Stress increases in exopher-mediated neuronal extrusion require lipid biosynthesis, FGF, and EGF RAS/MAPK signaling Cooper JF, Guasp RJ, Arnold ML, Grant BD, Driscoll M. Stress increases in exopher-mediated neuronal extrusion require lipid biosynthesis, FGF, and EGF RAS/MAPK signaling. Proc Natl Acad Sci U S A. 2021;118(36). doi: 10.1073/pnas.2101410118. PubMed PMID: 34475208; PMCID: PMC8433523. [PubMed]
Endosomal microdomains: Formation and function Norris A, Grant BD. Endosomal microdomains: Formation and function. Curr Opin Cell Biol. 2020;65:86-95. Epub 20200401. doi: 10.1016/j.ceb.2020.02.018. PubMed PMID: 32247230; PMCID: PMC7529669. [PubMed]
SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes Norris A, Tammineni P, Wang S, Gerdes J, Murr A, Kwan KY, Cai Q, Grant BD. SNX-1 and RME-8 oppose the assembly of HGRS-1/ESCRT-0 degradative microdomains on endosomes. Proc Natl Acad Sci U S A. 2017;114(3):E307-E16. Epub 20170104. doi: 10.1073/pnas.1612730114. PubMed PMID: 28053230; PMCID: PMC5255583. [PubMed]
Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic Balklava Z, Pant S, Fares H, Grant BD. Genome-wide analysis identifies a general requirement for polarity proteins in endocytic traffic. Nat Cell Biol. 2007;9(9):1066-73. Epub 20070819. doi: 10.1038/ncb1627. PubMed PMID: 17704769. [PubMed]